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ABSTRACT

This technical report presents our proposed solution to de-
veloping a wake-up word spotting system for the SLT 2024
Low-Resource Dysarthria Wake-Up Word Spotting Chal-
lenge (LRDWWS). Under the low-resource setting, we are
focused on 1) the use of pre-trained self-supervised learning
(SSL) speech foundation model for front-end acoustic feature
extraction, 2) the use contrastive learning to enhance neural
network embeddings for wake-word detection, and 3) the use
of clinically-inspired voice and prosodic features to improve
the model’s adaption to dysarthric speakers.

1. FEATURE EXTRACTION WITH WAV2VEC2
In the baseline method, the filterbank (FBank) features are
computed from raw speech samples and are used as the input
to the backbone feature extractor. In our system, we replace
the FBank feature computation with a pre-trained Wav2Vec2
model [1]. The Wav2vec2 model is a self-supervised learn-
ing framework for automatic speech recognition that learns
speech representations from raw audio data. We use the
“wav2vec2-large-xlsr-53” pre-trained model provided on
HuggingFace [2], whose training set includes Mandarin sam-
ples. The hidden states of the Wav2vec2 model are used as
the input to the CNN backbone. Table 1 shows the perfor-
mance of using Wav2Vec2 on the enrollment dataset. The
comparison shows that the model results in lower error rates
for all 4 speakers when using Wav2vec2 features.

Table 1. Feature Computation: FBank vs. Wav2Vec2.
Speaker Intelligibility FBank Feature Wav2Vec2
DF0015 68.44 0.233 0.138
DF0016 93.73 0.077 0.046
DM0005 85.78 0.243 0.132
DM0019 47.95 0.391 0.297

Given the control (con.) and uncontrol (uncon.) datasets,
the baseline method divides the model pre-training into 2
stages where the first stage trains the model with control
samples and the second stage uses the uncontrol samples. In
our design, instead of using only uncontrol data, we use both
control and uncontrol data so that the system uses control
data for regularization. Table 2 shows the performance of
using both control and uncontrol data in stage 2 on the enroll-
ment dataset. The results show that using both control and

uncontrol data improves the performance on 3 out of the 4
speakers.

Table 2. Stage 2 Data Usage
Speaker Intelligibility uncon. uncon.+con.
DF0015 68.44 0.138 0.102
DF0016 93.73 0.046 0.077
DM0005 85.78 0.132 0.103
DM0019 47.95 0.297 0.258

2. CONTRASTIVE LEARNING TO ENHANCE
DYSARTHRIC WAKE WORD SPOTTING

We consider dysarthria as a form of distortion to the speech,
and we want to train the feature extractor to “enhance” the
dysarthric speech. To achieve this goal, we design a con-
trastive learning strategy to make the feature extraction back-
bone network learn from the similarity and divergence be-
tween keywords from control and uncontrol speakers. In con-
trastive learning, each keyword sample is paired with another
keyword sample from speakers from different classes. For
example, when the sample is from a control speaker, then the
other sample comes from an uncontrol speaker. As is shown
in figure 1, both samples are processed by Wav2Vec2 model
and feature extractor to generate the feature vectors.

Fig. 1. Data flow of Contrastive Learning

A contrastive loss function is computed using the Eu-
clidean distance between the two feature vectors as in shown
in eq 1. L denotes the contrastive label with a value of 1
indicating the samples are from same keyword class and a
value of 0 indicating the samples are from different keyword
classes. The vectors f1 and f2 denote the baseline feature
vector and contrastive feature vector, and D(f1, f2) denotes
the euclidean distance. The value m is the margin in con-



trastive loss, and we use m = 1 during contrastive training.

Lcontrastive =L ∗D(f1, f2)
2+

(1− L) ∗max(m−D(f1, f2), 0)
2 (1)

As a result, the contrastive loss drives the divergence be-
tween two feature vectors to be small when they are from
same keyword, or increase the divergence up to the value of
the margin when they are from different keywords. We use
the contrastive learning loss as a regularization term and add
it to the cross-entropy loss with a fixed weight λ. The overall
loss function becomes eq 2. We evaluated four cases where λ
is set at 0.1, 0.005, 0.003 and 0.001. The results are shown in
table 3. The results show that when λ = 0.005, all speakers
in the enrollment show lower error scores.

Loss = Lcross−entropy + λLcontrastive (2)

Table 3. Contrastive Learning Performance
λ ValueSpeaker Baseline 0.01 0.005 0.003 0.001

DF0015 0.102 0.106 0.100 0.088 0.111
DF10016 0.077 0.040 0.034 0.063 0.097
DM0005 0.103 0.133 0.095 0.090 0.108
DM0019 0.258 0.322 0.234 0.275 0.310

3. VOICE AND PROSODIC FEATURES
In addition to utilizing deep learning models to learn segmen-
tal dysarthric speech characteristics, we also use voice and
prosodic speech features in our proposed keyword-spotting
system to capture supra-segmental characteristics. Dysarthric
patients are known to experience disruptions in controlling
their neuromuscular system. This affects their articulation,
resonance, phonation, and prosody [3]. The segmental fea-
tures capture articulation and resonance features. Extraction
of the voice and prosodic features is based on signal process-
ing methods and does not require training, which suits low-
resource applications, such as the one in this challenge.

We select several voice and prosodic features known to
be impacted by dysarthria. The selected features include: 1)
speaking rate, 2) mean and standard deviation of fundamen-
tal frequency (F0), 3) harmonic-to-noise ratio (HNR), 4) jit-
ter (local, absolute local, relative average perturbation, five-
point period perturbation quotient, and difference of differ-
ences of periods), 5) shimmer (local, absolute local, three-
point, five-point and eleven-point amplitude perturbation quo-
tient, and difference of differences of amplitudes), 6) cep-
stral peak prominence (CPP), 7) envelope modulated spec-
trum (EMS) of the 7 octave bands. Speaking rate can serve
as a measure of weakness and/or incoordination of the speech
musculature. The statistics of F0 describes its longer-term
dynamics within an utterance. For example, someone with
monotone speech will have a low standard deviation of F0.
Shimmer and jitter features represent short-term variations in
the F0 contour and are often used to characterize vocal qual-
ity. The CPP measures the overall level of noise in the speech

signal. It typically describes breathiness in speech and can
indicate voice problems [4]. EMS is a representation of the
slow amplitude modulation signal. It describes the distribu-
tion of energy in amplitude fluctuations across different des-
ignated frequency bands. In [5], EMS was shown to effective
in automatically discriminating between dysarthria subtypes.

Extraction of duration, F0, HNR, jitter and shimmer relies
on Parselmouth [6]. The code of extraction is adopted from
an open-sourced toolkit on GitHub1. The implementation of
EMS extraction follows the recipe in [5]. The modulation
spectra for amplitude envelopes extracted from the full speech
signal and the six selected octave bands centered at 125, 250,
500, 1000, 2000 and 4000 Hz. The amplitude envelope of
each band is extracted by a 30-Hz low-pass fourth-order But-
terworth filter (half-wave rectified), and downsampled to 80
Hz with mean subtraction. The power spectrum of a down-
sampled envelope is calculated with a 512-point fast Fourier
transform. From each of the modulation spectra, the peak fre-
quency, peak amplitude, energy in the region of 3-6 Hz, en-
ergy in spectrum from 0-4 Hz (Below4), energy in spectrum
from 4-10 Hz (Above4), and the ratio between Below4 and
Above4 are computed. The 7 amplitude envelopes deliver a
42-dimensional EMS feature in total. Combining all selected
voice and prosodic features with a binary gender label, a 59-
dimensional feature is constructed and concatenated with the
neural network embedding to perform the keyword classifi-
cation tasks. Table 4 reports the results of using voice and
prosodic features in comparison with system not using them.

Table 4. Model performance with and without using voice
and prosodic features.

Speaker Intelligibility with features without feature
DF0015 68.44 0.056 0.102
DF0016 93.73 0.069 0.077
DM0005 85.78 0.144 0.103
DM0019 47.95 0.183 0.258

4. TEST-B SCORES
We combine the methodologies described in Section 1-3 and
produce the final system for submission. Table 5 shows the
scores of our submission to test-B leaderboard. Contrastive
learning was not included in submissions 1-3 but was adopted
in submissions 4-6. An universal threshold of 0.005 was cho-
sen for the best performing system.

Table 5. Test-B Submission Scores
Submission # Score FAR FRR

1 0.121 0.032 0.089
2 0.184 0.017 0.167
3 0.117 0.022 0.095
4 0.099 0.020 0.079
5 0.104 0.020 0.084
6 0.109 0.016 0.093

1https://github.com/drfeinberg/PraatScripts?tab=readme-ov-file
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